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Abstract: Dealt with in the study are exhaustible resources -
minerals. In the study will be created a mathematical model of a
particular economic system - mine for minerals and will be proven
the existence of solution of the problem of optimal control of mines.
Also will be formulated necessary and sufficient conditions for
optimal control of mines. In today's market environment, many of
the parameters for optimum control problems are unspecified. To
deal with this fuzziness in conditions and parameters will be used
Intuitionistic fuzzy sets, defined from Atanassov in [5]. The
algorithms for solution of intuitionistic fuzzy models of mine’s
optimal control are presented.
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1. Introduction

Nonrenewable resours is fundamentally limited in quantity
and grade. Their exhaustion — now or later — poses some questions
about effective spending.

Goals[8] in extracting the resource are similar to those
regarding the extraction of other natural resources:

(a) maximize net present value;

(b) minimize the deviation between the amount of extracted
resource and a contractually specified amount;

(c) maximize production and operational flexibility.

Operations research modeling applied to mining applications
begin from 1960. Operations research models for strategic, tactical
and operational levels of planning within the development and
exploitation phases have been constructed and implemented. Briefly
review some of the seminal works in these categories are given in

[9].
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In [24] are pointed models of optimal control of mines. Let us
briefly outline them: Ramsey [25] analysed the consumption-saving
decision; Hotelling [11,25] showed how one resource under
depletion can be controlled optimally; Allen included a chapter on
the calculus of variations in his textbook on mathematical economics
[3]; Stavins [26] used a dynamic analysis of maintenance of natural
resources. Lozada applied to the Hotelling’s model a new
fundamental equation for the time intensity of the function change
of optimal values of optimal control problems [14]. Lyon [15]
discussed the role of ‘‘costate variable’” (‘‘shadow price’’) for
exhaustible and non-exhaustible resources. Piazza and Rappaport, in
[23] considered the optimal extraction problem of resources that
cannot be maintained continuously.

A methodological basis of optimal control of the economy is
the mathematical theory of optimal processes, developed by a team
of mathematicians under the guidance of Pontryagin [36]. To
formulate specific problem of optimal control is necessary to define
the set of variables describing the state of the economic system, to
set the objective function and the system of restrictive conditions.

The study is organized as follows: in section 2 will be
considered a general problem of the optimal control. In section 3
will be created a model of an optimal control of a mine for mineralls.
In section 4 will be formulated necessary and sufficient conditions
for optimal control of a mine. In section 5 will be proven existence
of a solution of the presented problem. In section 6, the model will
be extended by adding of profit’s taxatio. In section 7 will be
pointed ideas for intuitionistic fuzzy models.

2. General problem of optimal control
2.1. Formulation of the general problem
Let us consider the following problem for minimum [36]:

min fttolfo(t, x,u)dt + (ty, x(t,)) (1)

with restrictions:
ueEQCR™x=7f(xu),x(ty) =xy (xg €Xp),x(t1) € Xq,
where
u=u(t),u € R, x =x(t),x ER™"t > t,,
{rt,x,u), f°(t,x,u)}: R Xx R Xx R™ — R™;
®(t,x):RXR™ - R, X, X; are mathematical diversities.
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For the convenience let ™1 = f0(t,x,u) and x"*(t,) =0. Then
the problem (1) can be described as follows in an equivalent way if
(ty, x(t,)) = 0:

min x"*1(t;)
¥ =f(txu
u € Q,%(ty) € Xy, X(t;) € X,

2.2. Input data of the problem of the optimal control:

(1) a description of the object of control;

(2) an initial state of a physical system and the purpose of
management;

(3) a class of admissible controls;

(4) a criterion of quality — a functional, which gives us a
quantitative evaluation of the effectiveness of management.

The object of control is described as follows:

%, = fit,xt . xmul, L u™),  i=1,..,n (2)
x = x(t) = (x1(t),...,x™(t)) — characterize the state of the object;
u = u(t) = W(o),...,u™(t)) — characterize its control;

Xy, X1 € R™ are initial and target sets;

Xg € Xy is initial point.

The goal of management is to align the object with an initial
Xg €EXp in a point X; €X;. We will assume that the target set X;
continuously depend on ¢ and is a compact.

The class of admissible controls consists of measurable
functions u(t), fort, <t <t;, satisfying the restriction u(t) c Qc R™,
all of which brought the object from the starting point x, in one of
the points of the target set X;.

Quality criterion:

t
Clw)=| fOotx(),wt))dt,
to

afo . . .
where {fo(t,x,u),%(t,x,u)} are continuous in R™™*! functions.

Definition (1): We say that the problem of an optimal control
is autonomous if:
a) the object of management is described by the system of
ordinary differential equations of the form:
¥, = fit,xt, L xmul, L u™),  i=1,.,0,
where f(x,u) € C1((R" x Q);
b) Quality criterion has the form:
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ty
Cw = | fOLx(®),u®)dt,
to

where f%(x,u)) € C1(R" x Q) and x(t) is the decision of (2).

Definition (2): The control u*(t) of the class A will call
optimal in terms of the criterion of quality C(w),if C(u") <C(uw) for
each u(t) € A.

2.3. Principle of maximum of Pontryagin and conditions of
transverzalnost
Let u(t) is a control of A and the corresponding decision is

x() = (¥i(v), i=1..,n
Consider the vector %(t) = (x°(t),x(t),x™*(t)), which is the
decision of the extended system:

X =fxuw,
%(t) = (0,x0,tp) i.e.
x0 = fO(x,x"*1, ), (3)
= f(x, x™1,w),
x™ =1, %(ty) = (0,xg, to).

Let to introduce the following concepts: a conjugated system
and its decision, a function of Hamilton, a smooth diversity and a
tangent space to a smooth diversity.

The extended conjugated system of (3) has the form:

= —n—(x(t) u(t)) (4)
or
7o=0

N\, O .
nj = —Znim(x(t),t,u(t)), j=1..,n
i=0

o = —;ma—icx(tm u(o).

(n+ 2) —dimensional vector

() = (18, M), e, M1 (O)), o S Sty
is called conjugate solution of X(t), if 7j(t) is a non-trivial solution
of the extended conjugated system (4).

Hamilton function for extended system is:
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H(f]‘,f, u) = nOfO(x' xn+1’u) + et r]nfn(x' xn+1’u) + NMn+1-
Let denote with: M(#,%) = glggﬁ(ﬁ,i,u);
%= (%,x"1), where £ =%(t) = (xo(t),xl(t), ...,x"(t))
= (A, n41), where 7 =7H(t) = (10(), N8, ., M (1))
u) = H(ﬁ"?’: t,u).+ Musts M@, %) = M@, 2,t) + s
xt=x%(t),i=0,...,n+1
ni=n(),i=0,...n+1

Definition (3): Under smooth diversity will understand set
assigned finite number of equations of the kind:
gi(x)=0,i=1,..,k, x€ER"  k<n,

where the functions g;(x), i =1,..,k are continuously differentiable.

Definition (4): Let the smooth diversity S has the form:
gix)=0,i=1,..,k, xR  k<n,
where g;(x),i =1,...,k are continuously differentiable. Under a tangent
space to the smooth diversity § in a point x5 of § will call a set,
satisfying the following system of equations:
(Vgi(x0), x —x9)=0,i=1,..., k.

Note: In this study we will use only smooth diversities.
Definition (5): Present value of a payment [35]
We denote the payment at a time tby the function m(t).

The present value of the payment m(t) is m(0): m(0) = m(t)e™"".

Theorem 1:(Principle of maximum Pontryagin) [36]
Let us consider a controlled process in R™

x=f(x tu) )
Let A is the aggregation of all limited, measurable controls
u(t)c Qc R™, set of different terminal intervals to <t<t; and

transfer a starting point of the primary set X, at an end point of the
target set Xj.

Let

ty
Clw) = ffo(x(t),t,u(t))dt
to

is a functional quality on the set of controls u(t) of A for interval
to <t <t; with corresponding trajectories x(t). If the control u*(t)(¢t; <
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t <t;) with a corresponding decision X*(t) of the expanded system is
optimal control in A, it exists nontrivial solution 77(t) of the extended
conjugated system (4), such that
H@ ©,% ©,uw'®) = M7 0, % ®))
almost everywhere and
M@ @), % () =0,n5 <0 for all titg<t<t]

This can also be written in the form:
H®H* (@), 20, u*(®)) = M(7*(©),2*(t)) almost everywhere and
A7 (A% ox o * afl * *
G @200 = [ Y 1oL (5w )
0

* '=
tyg

Furthermore n,,1(t;) = n54+1(t;) =0 and therefore
M@ (t1), & (t1), t1) = 0.
If X, and X; are diversities in R™ with a tangent space T, and
T, in the points xj u x; accordingly, the decision 7*(t) needs to be
selected so as to satisfy the following conditions for transverzalnost
(or only one of them): n*(ty) L Ty or n*(t;) L T,

3. An economic staging of the problem of an optimal control
of mines

As mention in [21], manager of the mine must decide whether
to leave the resource in the ground or to extract and sell it at some
price (P). If he conserves it, he can sell it in the future. If he exploits
it, he can invest the proceeds at a positive rate of interest. In
continuous time, he will be indifferent to saving or seling if:

! (6)
—_=7
P
: aP . . . .
where P =— and r is the continuous compounding rate of interest.

at
The condition of indifference is an equilibrium condition for

suppliers to the market for the extracted product. It is known as
Hotelling’s rule for pricing a resource that is strictly limited in the
supply. Hotelling” s rule [11] is a portfolio balance condition for all
assets that can be freely shifted between portfolios in competitive
markets and are sterile in the sense that the holding of the stock of
the asset per se yields no net benefits. The price (P) rises at the rate
of interest as the resource is extracted:
P = P(0)e™.
We suppose that net benefits accrue as a continuous flow and
then
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V= f;oe‘”ﬂt,

where V is the present value of the resource, m, is the net benefit in
the t —th period, r is the discount rate for continuous compounding
and e’ is the continuous discount factor applied to the t—th
period’s net benefit [27,34].

Let us introduce the following indications:

b =b(t) — resource stock; a=a(t) — used force to extract the
resource; x = x(t) — derived product; p =p(t) — market price; q = q(t)
— resource price; w = w(t) — market price of the efforts.

3.1. Production function

In general terms each production function can be represented
in the following form:

f(Xp o Xiy ooy X Y1, Y0, Yn) = 0,

where X; (1 <i<m)is the value of a resource of the i-th appearance
in the creation of a set of production results ¥ (1 <j<n); Yjis the
magnitude of the production resulting from the j-th kind (j =1,...,n);
m is the number of the used types of resources; n is the number of
the species production results; f— the form of a multiple functional
relationship between these resources and results.

The function of producing of mines is:

x(t) = F(a(t),b(®)),

where a(t) is the used force to extract the resource and b(t) is the
resource stock. The units of the mining effort are marginally more
productive when there is access to larger stocks.

Then the resource constraint is:
t

b= s—fxdt,
0
where s = b, is the original stock of resource. So
t
x(t)=F a(t),s—fxdt .
0
Use s—b(T) = fOTxdt to compute T (the last moment of the
existing the mine).
We assume that F:
» F is strictly increasing and separately concave in its
arguments: F, = marginal physical product of a = MPP, > 0;
»  F, = marginal physical product of b = MPP, > 0,F,, < 0,F,, <0,
and F(0,b) =0 for each b[3].
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Note: F;, >0 as the growth of the factor a leads to an increase
in manufacturing output.

b) MRS, is a diminishing marginal rate of substitution along
an isoquant (combinations of a and b so that x is constant).

MRS, = —3—‘; = —slope of an isoquant;

Let %MRSba<0. From the implicit function theorem [31] we
get, that MRS,, =5
Fa

c) Fap >0,F,, >0 (an increase in one input will increase the
marginal product of the other).

Fap = Fpq > 0 as mining effort is more productive when there is
access to larger stocks and resource stocks are more productive when
operated by a more intense effort.

3.2. Function of the expense

Function of the expense C:R? > Rt U{0} will be defined as C =
wa, where w=w(t) is the market price of the effort a. It is used to
provide operational cost of the spent a To exploited b.

As x=F(a,b) u F; #0, then the implicit function theorem [4]
allows us to express a as a =a(x,b). From the same theorem implies
that there is ay,ap, App, Ay Axp, Ap, and their continuity.

So C =wa=C(x,b). It follows that

w
C, = marginal cost = wa, = 7 >0,Chy =wa,, >0,
a

F
Cb =wa, = —WF_b< O,be = Wayp <0
a

(marginal cost is increase).

The marginal cost is reduced if there is more b (the marginal
cost of the mining a tonne of the ore is lower if there is more of it
available to be mined) — Cpp, = way, > 0. The addition of b will reduce
cost more if the marginal physical product of b is large, relative to
that of a.

From x =F(a,b),a=a(x,b) and the implicit function theorem
follows that

da = a,dx + a,db
or dx = —da —2db; dx = F,da + F,db.
Ax Ax

From these, a, =F1_a> 0, a, = —I;—:< 0.

From a, = % we find, that a,, = —I;f—a;‘> 0 and
Faaab+Fab= Fab_Faan

Ayp = — - <0
0 F? R
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(Fgp >0 from 3.1c¢).

From a, = —Z—b follows that
— FoFpaap + FoFyp = FyFaqy — FyFap  FopFf — 2F,FyFap + FyoFp >0
bb = — = - :

3 3
Fa Fa
Therefore Cxx = Wy, > O, be = Wdayp < 0, Cbb = Wapp > 0.

3.3. Math profit of the mine

Let with m; we denote the profits of the mine at a time moment
t. The profit of the mine at a moment t is the difference between the
total revenue and the total expenditure at the same moment ¢.The
total revenues from the sales of the extracted product at the moment
t are px =pF(a,b). The price of x depends negatively on the amount
being sold. So p=pk), p'(x) <0. The total cost of the mine at the
moment t are wa = C(x,b).

Then 7, =pF(a,b) —wa =px—C(x,b). We will assume that the
mine begin operating at the moment t =0, so-called “current time”.
With T will mark the moment of closing the mine due to the
inefficiency of the production. The profit of the mine at a time
moment t, relative to current (zero) point is my =m,e”"t. The aim of
our management will be as follows the discounted present value of
the mine for the time interval [0, T] be maximum i.e.

T
maxf(pF(a, b) —wa) e "tdt
0
or corresponding dual expression
T
maxf(px —C(x,b))e "dt
0

3.4. Resource pricing

b is stock and the quantity available to the industry is
absolutely fixed at any given time. The price is determined from
moment to moment [20] by the “forces of the marketplace.” These
forces balance the demand of all the firms with the given supply
through the adjustment of the price (q).

3.5. Transversality conditions
The transversality condition “asset test” requires that a mine
should be abandoned when it has no market value. The value of the
mine, when abandoned is
qgb =0 at T (terminal time)
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i.e. when the ore has no value or the ore is exhausted. If it pays to
extract the first unit of the ore, it also pays to extract the last unit
of ore. This condition will be satisfied if b=0,q >0 at T.

The other transversality condition “performance test” requires
that net cash flow minus the value of depletion is

n—qh=0atT,

where m=TR —TC = pF(a,b) —wa in the primal or m = px — C(x) in the
dual.

m—qb is interpreted in [21] as a “snapshot” performance
indicator to be maximized at every point in time. If the maximum
value of performance is zero, it is time to close the mine.

3.6. Resource stock

The resourse b satisfies the dynamic constraint:
b=G(b)—F(a,b)=G(Mb)—x, G(b) is natural growth. The rate of
extraction is x =F(a,b). An operating mine always decumulates
bsince G(b) =0.

3.7. Formulation of the problem

The production problem of the mine [21] is to maximize its
own present value, which is the total resulting from adding up the
discounted reserves from the sales of extractions from known
quantity of the homogeneous ore. The mine is on an equilibrium
extraction path when its owners are willing to hold its existing stock
of ore in the ground.

In formulating the problem of an optimal control of a mine,
we can approach it in two ways, depending on by what we want to
manage - by the size of the effort that must be invested in the mine
to extract minerals or by the amount of product we want to sell.

In the first case:

3.7.1. The object of management is the stock of minerals. It
satisfies the ordinary differential equation

b =—F(a,b), F:R*->R*U{0}, a=a(t),b=b(t);

Initial point is b(0) = by. Therefore b(t) € [0,by] for each t € [0,t,];
The target set is X; = RT U {0};

The class A of the admissible controls consists of the
measurable functions a(t):a(t) =0,0 <t <t,;

Criterion of quality:

T
V(a) = —f(pF(a, b) —wa)e "tdt.
0
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Then the problem became the following form:
T
min — j(pF(a, b) —wa)e "dt
0
b =—F(a,b); b(0) = by;b(t) € [0,bo]; a(t) =0 for0 <t <t,.

In the second case:

3.7.2. The object of the management be a set by the equation
b =—x;x:R* > R*U{0}; x is industry sales. The remaining stock is b.

It is reduced at a rate equal to sales and b <0.Initial point is
b(0) = by.

Therefore b(t) € [0,by] for each t €[0,t,]; the target set is X; =
Rt U{0}; the class A of admissible controls consists of measurable
x():x(t) 20,0 <t <ty

Criterion of quality:

T
V(ix)=— ](px — C(x,b))e "dt.
0

Then the problem became the following form:

T
min — j(px — C(x,b))e "tdt
0

b = —x; b(0) = bgy; b(t) €[0,by]; x(t) =0 for0 <t <t,.

4. Necessary and sufficient conditions for optimal
management of mines

4.1. Applying the principle of maximum of the Pontryagen
to the problem for an optimal control of a mine
Let us consider the autonomous process:
b = —F(a,b) respectively h = —x
with measurable controls a(t) respectively x(t). On the set of controls
a(t) of A (x(t) of A) from the interval 0 <t <t, with the respective
trajectories b(t) we will determine functional of quality

T
V(a) = — f(pF(a, b) —wa)e "tdt
0

or

T
V(ix) =— f(px — C(x,b))e"tdt.
0
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From the principle of maximum of Pontryagin we obtain that
[31,32,35], that if a"(t)(x"(t)) is optimal control (0<t<T) with
corresponding decision b*(t) = (b (t),b"(t)):

10 o0H —rt 0 ;
b =R=—(pF(a,b)—wa)e , b’(0) =0,b =—F(a,b), b(0) = b,

respectively
p° = —(px —C(x, b))e‘”, bo(0) = 0,b = —x, b(0) = b,,
it exists nontrivial solution of the extended conjugated system

Jo = 0,1 = =2 = o - [(pF (a,b) — wa)e™""] + 1 2 (a, b)
770 - 'n - ab _770 ab (p a, wa)e rlab a, ’

respectively

) . 0H 4] -1t 0x
o =01 =~—>= Uo%[(l’x_ Clx b))e™™] T

such that:
1) H@*(©),b°(®),a" () = M(ﬁ*(t),B*(t)) almost everywhere
2) M(H*(T),b*(T),T)=0
3) 1o <0 everywhere for 0 <t <T.

The target set X, for our problem is [0,by], therefore the
conditions of transverzalnost transformed into
4) n(T) = 0.
H(,b,a) = no[~wF (a,b) — wa)e "] +1(=F(a, b)),
respectively
H(#, b, a) = no[—(px — C(x,b))e™"] + n(—x)).

We can assume that 71y =ny(t) =—1. Then ﬁ(ﬁ,B,a) =me "t —
nF(a,b). For the time 7, from 1), 2) and 4) we obtain that mpe 7t =0 .
Then n = —pFye "t + nF,.

Let g =ne",q=q(t) (nis the present value of q).

We find that § =rq — F,(p — q) respectively ¢ =rq + Cp.

Moreover, the principle of maximum Pontryagin requires:

ﬁ(ﬁ*,E*,a)L:T =0i.e. [pF(a*,b") —wa* —qF(a*,b*)]|;=r =0
respectively
[px* — gx* = C(x",b)]l¢=r = 0.
Therefore if a*(t)(x*(t)) is an optimal control for 0 <t <T with

a corresponding b*(t), it exists a nontrivial solution q of
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g=rq—F,(@—q), (q=rq+C(p), (7)
q(T) =0, (q(T)=0), (8)

such that
[pF(a*,b*) —wa" — qF(a”,b")]|¢=r = 0,

max|[pF (a,b) —wa — qF(a,b)] e~ = (pF(a*,b) —wa" — qF(a",b))e™"*
a

Respectively
[px" —gqx™ = C(x",b)]l¢=r = O,
{mfx[px —C(x,b) —gx]e ™ = ((p— @)x* — C(x*,b))e .
The solution of the problem of Cauchy [31,32] for q is:
q(t) = b+ (g ! (Fbpe-ff +rpd) 43), t € (0,T) 9)
q(T) =0 (10)
q(0) = [} (Fype™hr+%) d (11)
respectively
q(t) = el (q0+ 1, (c,,e—ff"dS) d1), te (0,T) (9%)
q(T)=0 (107)
q(0) = = J7 (Cre™5 %) d. (11%)

Let us to prove the following statements:
Statement 1: In the above-mentioned assumptions for F
q() =0 for each t €[0,T].

Proof: We see, that q(0) >0 is a positive number.
As

d [t _
E(fo F,pe % (T+Fb)dsd/1) >0,
Then
fot Fbpe—fol(T+Fb)deA

is an increasing function of ¢t.
Then

A
IOT Fbpe—fo (T+Fb)d5d/1 > fot Fbpe—fo}'(r+Fb)deA

for each t € (0,T).
Therefore
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T t
q(t) _ efot(r.H:'b)dA bepe—fol(r+Fb)dsdA_-[Fbpe—f:(T+Fb)deA >0
0 0
for each t € (0,T). The Statement 1 is proven.

Statement 2: Let q is a decision of the conjugated system:
qg=rq—F,@®—-q) (g=rq+Cp)
q(T) =0, (12)
and p(t) is the market price of the product.

If p(0) —q(0) >0 then p(t) —q(t) >0 for each t.

Proof:
p(t) = p(0)e™,

therefore p satisfies the condition

p =r1p.
g=rq—F,@®—-q
Then
p—q=0—-F)p—q.
Therefore

(p— q)(t) = e T _ )(0) > 0V L.

So, the Statement 2 is proven.
In this study we will formulated the following theorem 2 and
will prove it using these two statements and the theorem Roll [31]:

Theorem 2: 1f F(a,b):R> >R is continuous and twice
differentiable as F, > 0,F,, <0,F(0,b) =0 for each t; p(t) = p(0)e'; q is
solution of the conjugated system (12) and

lim (p(0)e™ F(a,b) —wa) < —e <0Vt
a—co

respectively

If C(x,b):R?> > R is continuous and twice differentiable as
Cy>0,Crx <0,0(0,b) =0 for each ; p(t) =p(0)e™; q is solution of the
conjugated system (12) and

lim (p(0)e™x —C(x,b)) < —e <0Vt
X—00

then H(a,b,q) reaches its greatest value for a>0 in a single point.

Proof: By Statement 1 follows, that q(t) =0vte[0,T].
Therefore, by
lim (pF(a,b) —wa) <—e<0Vte][0,T].
a—co



Existence of a solution of the problem of optimal control of mines for minerals

By p(0) —q(0) >0 and Statement 2 follows that
p(t)—q(t) > 0vVtel0,Tl.

F(a,b) is strictly concave of a and p—¢q >0 for each t.
Then (p —q)F(a,b) is strictly concave of a.

Therefore H(a,b,q) is strictly concave of a. F (0,b) =0 for each
b, then H(a,b,q) =0 for each b and for each q. H(a,b,q) is strictly
concave of a, H(0,b,q)=0 for each b and for each g and
tlli_r)glw((p—qF—Wa) <—-£<0. It follows that, H(a) crosses again

the x —axis at the point @™ or does not cross the x — axis more than a
point a =0.

First case: H(a,b,q) crosses the x — axis at the points a =0 and
a=a". So, H(a,b,q) = 0=H(a™ b,q), H(a,b,q) is continuous and
differentiable function of a.

By the theorem of Roll follows, that exists a™ € (0,a™) such
that:

9 5 —
aH(a,b,q) g = 0
Therefore

(r — k@’ b) =w.

Therefore H(a,b,q) has local extremums. By strict concavity of
H(a,b,q) follows, that this local extremum is the only local extreme
and is local maximum. H(a*,b,q) is the only local maximum of a for
the continuous function H(a,b,q) of a € [0,a™], then it is the largest
value of the function of a, a € [0,a*].

H(a*,b,q) > H(0,b,q) =0V b.

For a>a", the function of Hamilton becomes negative.
Therefore H(a*,b,q) is the largest value of the function H(a,b,q) of a,
for a = 0.

Second case: ﬁ(a,b,q) crosses the x — axis only in the point a =
0. As H(0,b,q) =0,H(0,b,q) is negative for sufficiently large values of
a,ﬁ(a,b,q) is strictly concave and continuous function of a, then a =
0 is the largest value of H(a,b,q) of a, for each a > 0.

So, the theorem is proven.

Note: Let g is a solution of the conjugated system (12) and
satisfies:
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[ —q@)F(a",b") —wa’]|;=r =0
p-qF,@@,b)—w=0

{[(p —Qx = Cx",b)]l=r = 0}
p—q=Cy(x",b%) '

where a*(t) is an optimal control and b*(t) is its corresponding
optimal trajectory. We find that g =p —

Fa(a*b*) *
After differentiation is obtained following:

quq=p—Fﬁa+—w:;%‘“a+—W£§bb—%+—wgaa+—wggbb (13)
. Fa(a*b*)—
G =rq=Fy(p—q) =rEEE — Fy (p— o). (14)

As equate the right sides of (13) u (14), we get, that a" is a
solution of

E? FE,w  F r(pF, —w)E, E?
q=—-—2 ﬁ+a—+LbF+M—Fb(p—q) a_
WFaa Faaw Faa WFaa WFaa

a(T): F,(a(T),b(T)) = % = # , where p =rp,w =rw.

Analogously we get, that x* is a solution of:
P—Cx Cp Cxb b

X=-—rPx b poaby g 2
Cxx CXX Cxx Cxx’

x(T): Cx(x(T), b(T)) = p(t) = p(0)e™.

4.2. Necessary and sufficient conditions for optimal
management of mines

Let us formulate and prove the following theorem 3 based on
the theorem 2.

Theorem 3: Let b*(t),q"(t) are respectively the optimal path
and the decision of the conjugated system of the task:

min — fOT[pF(a, b) —wale~"tdt (15)
b = —F(a,b), b(0) = b,

F:R? > R*U{0} is continuous and twice differentiable;
a=a(t) =0,b=b(t) €0,byl.
If

F(0,b) =0Vb,F, > 0,F,, <0,p(0) —q(0) >0,p = pye"
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and
lim(p(0)e™ F(a,b) —wa) < —s < 0 V¢,
a—w

then the necessary and sufficient conditions d to be optimal control
for (15) are:

(a) maxH(a,b",q") = H(@b",q");
(b) H(a,b*,q")

ep = 0-

Proof:

Necessary conditions:

Let d is an optimal control with a corresponding optimal
trajectory b*. By the principle of maximum Pontryagin follows that
there is a decision ¢q"of the conjugated system problem (13)
satisfying conditions (a) and (b) of the problem.

Sufficient conditions:

Let a* is an optimal control of the problem (13) with a
corresponding optimal trajectory b*. Then a” satisfies the conditions
(a) and (b) of the problem. Let d is an control, satisfies the
conditions (a) and (b) of the problem, but & is not optimal. By the
theorem 2 follows that H(a,b*,q*) reaches its greatest value of a for
a>01into a single point i.e. d = a” that is contrary to our assumption.
Therefore dis an optimal control.

5. Existence of a solution of the problem for optimal control
of mines of minerals

Consider the problem of the optimal control with a non-fixed
end time moment T :

T
max f(pF(a, b) —wa)e "tdt
0

b = —F(a,b),b(0) = b, (16)
F:R?>RYU{0},a=a(t) =0,w=w(t) =0,p =p().

Theorem 4: Let F(a,b) is continuous and twice differentiable.
If F(,b)=0 for each b, E;,>0,F,<0, p(0)—q(0)>0, p=
poe™t, b = b(t) € [0,by] and ii_r)rol((p(O) e™F(a,b) —wa) < —e <0 for each t, it
exists only continuous a*(t,b), where in the function
V(a,b) = pF(a,b) —wa
reaches the its largest value for each ¢.

Proof: By p(t) >0 for each t.It follows that pF(a,b) is strictly
concave of a.
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Then V(a,b) = pF(a,b) —wa is strictly concave of a. As F(0,b) =
0 for each b, V(0,b) =0 for each b. V(a,b) is strictly concave of a,
V(0,b) =0 for each b and
Li_r)rg((pF(a,b) —wa) < —e<0.

Therefore V(a,b) crosses again the x —axis at the point a™ or
V(a,b) does not cross again the x —axis more than the point a=0.

First case: V(a,b) crosses the x —axis for a=0 and a=a".
a) As V(0,b) =V(a*,b) =0 for each b, V(a,b) is continuous and
differentiable function of a,by Roll’s theorem follows that there is

a* € (0,a™): aa—xV(a, b) . =0.

=a,
So
pF,(a*,b) = w. (17)

Therefore V(a,b) has a local extreme. By strict concavity of
V(a,b) of a follows that the local extreme is an unique and is a local
maximum.

V(a*,b) is the only local maximum of a for the continuous
function V(a,b) of a for a* € (0,a™), then it is the greatest value of the
function of a for a” €[0,a™], i.e. V(a",b) >V(0,b) =0 for each b. For
a>a", Hamilton’s function becomes negative and therefore V(a", b)
is the largest value of the function V(a,b) of a for each a =0.

b) Let us consider the equation:

p()F,(a",b) —w(t) = 0.

From a) follows thatp(t)F,(a",b)—w(t)=0 for each b. As
p(t)F(a”,b) —w(t) #0 for each t and b, then by the implicit function
theorem [31] follows that there is a single continuous a*(t,b),
satisfying p(t)F,(a*(t,b),b) —w(t) =0 for each t and b. a'(t,b) is
continuous. Therefore a*(t,b(t)) will be also continuous for each
continuous b(t).

Second case: V(a,b) crosses the x—axis only for a=0. As
V(a,b) =0 for each b, V(a,b) is negative for sufficiently large values
of a, V(a,b) is strictly concave and continuous of a, follows that

a =0 is the greatest value of V(a,b) of a for each a = 0.

a” =0 1is continuous function for each (t,b).
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Consequence 1 of the theorem 4: If the conditions of the
theorem 4 are satisfied, then the set of admissible controls is
limited.

Proof: Theorem 4 shows that the optimal control belongs to
the interval [0,a™] (0 < b < by).

Let us prove, that a**(b) is limited for each b €[0,by]. Let us
assume that a™*(b) tends to infinity for 0 < b < b,.

Then there is a limit of a sequence of points

by, k=12,.. : 0<b,<b, and ,lii_r)’r(}obk =b € [0,by], for which
11(1_1)133 a™ (by) = oo.

It is known that a* satisfies the equation pF(a,b)—wa =0.

Let us assume that pFa(a**,l_)) =w. From theorem 4 follows that
a® is the only solution of this equation. Therefore a* = a™. Moreover,
from the theorem 4 it follows that V(a,E) >0for a € [0,a™]. Therefore
V(a,b) =0 for a€[0,a”]. We received inconsistent with the strict
concavity of V(a,b). Whence it follows that pFa(a**,B)—w + 0.

Then from the theorem of the implicit functions [31] we get
that there is a single function a*(b), which is continuous in a
neighborhood of the point b:

pF(a*(b),b) —wa**(b) = 0.

Therefore Il{im a™(by) = a**(l_)) =o, which contradicts the
continuity of a™ in a neighborhood of the b. Therefore a™(b) is
limited for each b € [0, by].

For a > a™, the function V(a,b) = pF(a,b) —wa becomes negative

(the profit of mine becomes negative) and the production should be
terminated.

Theorem 5: (existing) Let F(a,b) is continuous and twice
differentiable, for which F, > 0,F,, <0,F(0,b) =0 for each b.
Let the following conditions are met:

1) lim(pF(a,b) —wa) < —e < 0;
a—w
2) For each by there exist permissible control a(t), for which
exists Ty(by):b(Ty) =0, where b = F(a(t),b),b(0) = by;
3) p(t) =p(0)e™ > 0.
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Then there is optimal control a*(t) for the problem (16), which
is the only solution of the equation pF,(a,b) = w.

Note: The timing of the closure of the mine is T <T, as
production is impossible without the presence of mineral reserves.
In particular Ty can be infinity.

Proof: As the conditions of Theorem 4 are present, it is
applicable. From this theorem it follows that there is continuous
a*(t,b(t)), which function pF(a,b) —wa reaches its greatest value and
p(OF,(a*,b(t)) = w(b).

Let us consider the function

u(t,a”) = p(OF(a*,b(t)) —w(t)a*(t) for each b.

We will prove that u(t,a”) = [F(a*(t),b(t)) —Fa(a*,b(t))a*(t)]p(t) is
limited for each t.

Let us assume that

lti_r)xtlu(t, a’) = lti_r)rtl[F(a*(t), b()) — Fy(a*,b(®))a*(®)]p(t) = .

Of continuity of u(t,a”) follows, that £ =o. Assuming a*(t)
remains limited for t € [0,), as u(t,a*) is continuous, b(t) € [0, by] will
follow that u(t,a”) will remain constrained for infinitely large values
of the time.

Therefore ;im a*(t) = . So

lim oo[F(a*(t), b(t)) — Fy(a’,b(®))a" (O)]p(t) = .

a*(t)-

This contradicts the condition 1) of the theorem. Then there
is M:u(t,a”) < M for each t.
Therefore

fOTu(t, a*)e "tdt SfOTMe'”dt =¥—¥e'rT < %, for each T < .

In the case that T is infinity, then fOTu(t,a*)e_”dt is convergent
and therefore in this case there is an optimal control of the problem
(16). So the theorem is proven.

6. Taxation

The contemporary countries have a tradition of regarding
underground wealth as an eminent domain and a legitimate source of
revenue. The simplest and most straightforward component is the
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bonus bid. “The bonus bid system [21] works best if the exploiting
firm is more willing and able to bear risk. It is important, that there
be genuine competition in the bidding. Jurisdictions prefer to bear
some of the risk. The joint venture is a possible vehicle for doing
this, but the country will levy taxes on the produced product, on
profits or on rents”. As mentioned in [21], there are two main
considerations in designing tax systems. The first is simply the yield
and timing of the revenues, estimated over the predicted life of the
mining operation. The second is attractive. A tax is said to be
“better” if it is neutral. The most common tax is the gross royalty.
The tax base is the market value of produced output and the tax is
levied on an ad valorem basis. The royality will induce a
“premature” end to the mining operation and the minerals will be
left in the ground.

Let 7 be the ad valorem gross royality. Then the present value

of the mine can be calculated (in the dual) as
T

f[(l —1)px — C(x,b)]e "tdt.
0
The price of the extracted material p is given. The total cost
of the extraction is seen to depend on the remaining stock b as well
as on the rate of the extraction x.
The current value of Hamiltonian is:
H=(1-1)px—qx—C(x,Db).
The principle of maximum Pontryagin requires:
ﬁlt:T =0 (Hamiltonian must be zero at T)
ie. [(A—Dpx"—qx"—Cx",b)]l¢g=r =0 and (1 —17)p —q = C,,(x",b").
But the marginal and average costs of the mining are rising as
the stock of ore declines. q falls toward zero at T.
So gb=0 at T. Then q=0,b>0 at T and some ore remains
unmined. Therefore
(1 —Dp = C(x, b) = <=2
This means that the marginal and average costs will be lower
at T, the higher 7 is.
“The higher-grade cutoff problem [21] is averted for a
producing mine by allowing the firm to write off its expenses from
its pretax revenues. The firm will maximize both pretax and aftertax

at T.

profits.” (1 —1) is a constant and it can be factored out of the integral
and the problem of the mine is identical for all tax rates than one,
and including zero. Therefore
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T
V=>01-1) f [px — C(x,b)]e""tdt.
0

The profit tax offers a theoretically satisfying solution to the
problem of the mine. The unit price of the resource is q. If the profit
of the mine is to be taxed at 7, the unit resource price is (1 —1)gq.

As mention in [21] the country collects a tax based on realized
profits at 7 and pays a subsidy 0 = —7 when the mine has losses.

“The resource rent tax [21] is a radical departure from
traditional methods of taxing resource rents.” Let with E denote the
expenses of the mine employing D units of effort to discover new
reserves.

E =E(D),E'(D)>0,E"(D) > 0.
Then the dynamic constraint is
b=D-—x.
For profit taxation, the mining firm is supposed to

T
max V= f{(l —D[px — C(x,b)] — E(D)}e"dt.
0
For resource rent tax, the mine is supposed to
T
max V= ](1 —1)[px — C(x,b)] — E(D)]e "'dt.
0

The dynamic constraint is in both cases b =D —x.
For profit taxation, Hamiltonian function is
H=(1-1)[px—C(x,b)]—ED)+q(D —x).
For resource rent tax, this function is
H=1-1)[px—C(x,b)E(D)] + q(D — x).

The mine has two control variables x, D and one state variable
b. From the principle of the maximum of Pontryagin, for the profit
taxation it follows that

(1_7)[p_cx]_q =0,
—E'+q=0.
Therefore (1—-1)[p—C,]=E i.e. the price of the extracted
product

’

E
p=C,+ 1= marginal operating cost + marginal discovery cost/(1 — 1)

When the tax rate t decreases marginal operating cost,
marginal discovery cost or both increases.

For the resource rent tax:

(1-Dp-Cl-q=0,1-0)[-E]+q=0.



Existence of a solution of the problem of optimal control of mines for minerals

Therefore [p—C,] =E i.e. the price of the extracted product
p = C, + E' = marginal operating cost + marginal discovery cost.

7. Intuitionistic fuzzy model for an optimal control of a
mine

In subsection 3.7 was defined a model for an optimal control
of the mine of minerals. The modern market environment is
distinguished by changeability and unstability. To handle with
ambiguity Atanassov in [5] defined the concept of Intuitionistic
fuzzy sets (IFS). We give some remarks on IFS (see [5,6]).

7.1. Basic definitions related with intuitionistic fuzzy sets

7.1.1. Intuitionistic fuzzy pairs (IFPs)

IFP is an object with the form (a,b), where a,b € [0,1] and a+ b <

1, that is used as an evaluation of some object or process. Its
components a and b are interpreted as degree of membership and
non-membership. Let us have two IFPs x =(a,b) and y =(c,d).

The following relations are defined:
x<yiffa<candb>d,x<y iffa<candb>=d,
x=yiffa=candb=d,x>y iffa=candb <d

and x>y iffa>c and b < d.

Some of the operations with IFPs are:
x&y = (min(a, ¢), max(b, d)); xVy = (max(a, c), min(b, d));
a+c b+d

2 72
In [6] are given many definitions of “negation”. We recall
following —x = (b,a).

x+y={(a+c—achbd);x.y =(ac,b+d— bd); x@y =

7.1.2. Intuitionistic fuzzy set

Let a set E be fixed. An Intuitionistic fuzzy set (IFS) 4 in E
is an object of the following form: A = {{x,us(x),9,(x))|x € E}, where
functions pu:E — [0,1] and Y4:E — [0,1] define respectively the degree
of membership and the degree of non-membership of the element xeE
and for every x EE:0 < puy(x) +9,(x) < 1.

AcCBiff (vx€ E)(#A(x) < up(x)&I9,(x) = 1913(35));
ADBiff Bc A A= {{x,9,(x), ua(x))|x € E};
A=Biff (vx € E)(#A(x) = ug(x)&I9,(x) = 193(35));
AN B = {{x,min(pus(x), up(x)), max (9, (x), 95 (x)))|x € E};
AUB = {(x, max(,uA(x),,uB(x)),min(ﬁA(x),19B(x)))|x € E];
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7.1.3. Generalized Intuitionistic Fuzzy Number
Definition (6) [20]: An IFN A'is defined as follows:
(i) an intuitionistic fuzzy sybject of real line.

(ii) normal i.e. there is any xo€R such that uzi(xo) = w,v;i(x9) =0
for 0<w+o <1

(iii) a convex set for the membership function puzu(x) i.e.

pzi(Ax; + (1 = A)x3) = min (,ugi(xl),/,tgz(xz)) Vxy,%X, €ER,AE [0, w]

(iv) a concave set for the non-membership function vz(x) i.e.

vzi(dx; + (1 = Dxy) = min (Vgi(X1)pVAi (xz)) Vxq,Xx, € R,AE [0,1]

(v) pzi and vz are continuous mappings from R to the closed
interval [0,w] and [o,1] respectively and x, € R, the relation 0 < puz +
vz <1 holds.

7.2. Intuitionistic fuzzy integrals, posed by extended
(fuzzy) integrals of Sugeno and Schocken

7.2.1. Basic definitions of generalized measure theory

Let X is nonempty set. Let C is nonempty set of subsets of X.
u:C = [0,0] is negative and multiple extended real valued function
defined on C. We recall some basic definitions from [29,30.]

Definition (6): Multiple function wu:C —[0,0] is called
summary measure on (X,C) if and only if u(@) =0, if @ € C.

Definition (7): Multiple function wu:C —[0,0] is called
monotonous measure on (X,C) if and only if it satisfies following
conditions:

(1) w@®@ =0,if peC;

(2) IfE€eCFeCand ECF then u(E) <u(F)(monotony).

In [7] are defined intuitionistic fuzzy integrals based on
fuzzy(extended) integrals of Sugeno and Schocken [28].

Here we recall Intuitionistic fuzzy integral of Schocken on
finite sets following [7]:

7.2.2. Intuitionistic fuzzy integral of Schocken
Let A" = (x,us(x),v4(x))|x € E, where uy:E - [0,1] and v4: E - [0,1] is
IFS. E =X = {x1, X, .., X }-
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Let Appteract = (% 1a(x),va(X))|x € E, where py:E - [0,1] and vy E -
[0,1] is IFS with E = P(X).u,s(x) and v4(x) are summary measure (reset
on empty set) on o —algebra P(X). uy(x)and vy(x) [7] are interpreted
accordingly as no interaction rate and degree of interaction between
the elements x;, coming into Xx.

Definition (8): If f:X - [0,1], then

(IEC) [, fdAiterace = (C) [, fdua, (C) [, fdva) is intuitionistic
fuzzu integral of Schocken over final set X.

The meaning of above integral is that, when an evaluation of
interaction A; between x;and a function of confidence gives fuzzy
assessment of credibility of the experts of X.

7.2.3. Intuitionistic fuzzy integral of Schocken by function
with fuzzy values on finite sets

Let X = {x4,x3,...,x,} and f is function, defined on X, with values
in the set of fuzzy numbers. The function f can be expressed as
(my,my, ...,my), where m; is the function of belonging of fuzzy number
flx),i=12,.. ,n

Definition (9)[7]: For each a €R,the set a-level of fuzzy
function (f =my,my,,..,m,) will denote by F,. It is fuzzy subset of X
with function of belonging mg, which is defined as follows:

f:mi(t)dt +o
o when m;(t)dt # 0
mg (%) = S, mi(t)dt —o
%, (t), in other cases
Fuzzy set E, is n—dimensional vector

(mFa (xl)' mFa (xl)! e mFa (xn)>'

Let A" = (x, ug(x),va(x))|x € E, where uy:E — [0,1] and v4:E - [0,1] is
IFS with E = P(X). us(x),v4(x) are summarize measures (reset on the
empty set) on the og-algebra P(X). Let us P(X) is the set of all fuzzy
subsets of X.

Let A;'knteract =(2,4(2),V4(2))|z € E, where

Aa(2) = (€) [, Hodita and 74(2) = (C) [, vdvs,
is IFS with
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E = {z|z € P(X) and y, is integrated of Schocken by p, and v, over X}.

In the integrals we use to define of [iy(2),V4(2), the function u,
is function of belonging of fuzzy set z. Let the values of f are
trapezoidal fuzzy numbers i.e.

f = ((all: A1p, A1c) alr): (azl: A2p, A2¢y aZT)' RE] (anl' Anp) Ane) aln))-

Then for each a € R,a—level of f is fuzzy subset of X with
function of belonging mg, (x;) for i = 1,2,...,n. In this case as mentioned
in [7] It is very difficult to get a manifest formula fiy(F,) and 7,(F,)
by a.So in [7] are used numerical methods for calculus integrals and
standard algorithm for computing the final integrals of Schocken to
calculate approximately

0

(UFSC) | fdAinterace = (| Ha(F)da, | V4(F)da).
J [ ein]

0
Ua(x),v4(x) — summirized measures 0606menu mepku over P(X),

for which u,(L) +v4(L) <1 for each L€PX) and the values are
negative numbers.

7.2.4. Intuitionistic fuzzy integral of Schocken by function
with intuitionistic fuzzy values on finite sets

Let X = {x{,%5,...,x,} and f is function, defined on X, with values
in the set of intuitionistic fuzzy numbers. The function f can be
expressed as ({uy,v1),{U2,V2), -, {n, Vn)), where p;,Vv; are respectively
functions of belonging and non-membership of intuitionistic fuzzy
number f(x;),i=12, ,n.

Definition (10): For each a € R,the set a-level of intuitionistic
fuzzy function f = ((ug,v1), (U2, V2), -, {Un, V) Will denote by F,. It is
intuitionistic fuzzy subset of X with function of belonging and non-
membership respectively pg, and vg, which are defined as follows:

NG o0
" (ff) vk whenf w(®) +1—v(©)de # 0
—oo M — Vi —00
HFa(xi) =
1 .
—max,.(t),  inother cases

2
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[71=v;(t)dt oo
. . when | p(t)+1—v(t)dt %0
[52 10 + 1= v (D dt i i
—oo M — Vi —oo
MF,,(xi) =
1
2 n;fz(l - v (), in other cases

Intuitionistic fuzzy set F, can be expressed as follows

((HF“ (x1), VF, (x)), (.UF,, (x2), Vg, x2)), e (#Fa (xn), VF, (xn)))-

Let
A" = (o, ua (), va(x))|x E E,

where py:E - [0,1] and vy:E - [0,1] is IFS with E =X = {x1, X5, ..., X }.

Let

Ainteract = (X, 14 (x),v4(x))|x € E,

where pyu:E - [0,1] and v4:E - [0,1] is IFS with E = P(X). p,(x),v,4(x) are
summarize measures (reset on the empty set) on the o-algebra P(X).

Let us P*(X) is the set of all fuzzy subsets of X.
Let

Ainterace = (2, 0a(2),V4(2))|z € E,

where fi,(z) =3 (C) [, s and V4(2) =5(C) f, v,dvs, is IFS with E =
P*(X).

In the integrals we use to define of fi,(2),7,(2), the functions u,

and v, are respectively function of belonging and non-membership
of intuitionistic fuzzy set z.

Let the values of f are trapezoidal intuitionistic fuzzy

numbers i.e.
f = (ay, a1p,Q1¢, A1, gy, Qg Ay ' Qp,0), A2y, op, oy Aory Agps Aop's Aoy Gop e
(all' QA1p, A1c) A1y) Aqp's Aq gy a1c'a1r'))-

Then for each a € R,a —level of f is intuitionistic fuzzy subset

of X with function of belonging pg(x;) and function of non-

membership vg (x;) for i =1,2,..,n. In this case as mentioned in [7] It

is very difficult to get a manifest formula fi,(F,) and ¥,(F,) by a. So
in [7] are used numerical methods for calculus integrals and standard
algorithm for computing the final integrals of Schocken to calculate
approximately

o0

[ Fdintoraee = (©) Xf fdfis, (C) )[ fdF,) = Of AaF)da, [ 4RO da)

X 0
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7.3. Intuitionistic fuzzy diferential equation

Melliani and Chadli [17,18] discussed differential and partial
differential equations under intuitionistic fuzzy environment
respectively. Abbasbandy and Viranloo [1] discussed numerical
solution of fuzzy diferential equation by Runge-Kutta method with
intuitionistic treatment. Lata and Kumar [13] have introduced time
dependent intuitionistic fuzzy linear differential equation and have
proposed a method to solve it. Mondal and Roy [19] has discussed
strong and weak solution of intuitionistic fuzzy ordinary differential
equation, in which they have solved first order homogeneous
ordinary differential equation in intuitionistic fuzzy environment
and discussed initial value as intuitionistic fuzzy number --
triangular intuitionistic fuzzy number. In [22] intuitionistic fuzzy
Cauchy problem is solved numerically by Euler method under
generalised differentiability concept. In [19] is described the
generalized intuitionistic fuzzy laplace transform method for
solving first order generalized intutionistic fuzzy differential
equation. Condition in the presented problem is taken as Generalized
Intuitionistic triangular fuzzy numbers (GITFNs).

Definition (10): The a —cut of an IFN A=
{0, gy (), v4(x))|x € R}is defined as follows: A =
{00 ua 0O, v x € R us(x) 2 aand vy(x) <1—a},Vx € [0,1]. The a —cut of
IFN A generates pair of intervals and is denoted by [4],=
{[Af (@), AF ()], [Af (@), Ag ()]}

Definition (11): Let f:I - {IFNR"} for some interval [ be an
intuitionistic fuzzy function. The a —cut of f is given by

F Ol = {{f* ¢ 0. FF o). [f- . F o)}, where
ffa)=Mn{fTta)lte,0<a <1},

FH(t,a) = Max{f*(t,Q)|t€,0<a <1}
fTta) = Min{f~(t,@)|t€e,0 < a <1},

fHt,a) = Max{f~(t,Q)|t€,0<a <1}
Definition (12): For arbitrary u,v € {IFN R"}, the
D(u,v) = sup d([u]% [v]*)
1@<

is the distance between uand v [12], where d is the Hausdorf metric
in {IFNR"}[12].
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Definition (13)[8]: Let be F:(a,b) » {IFN R'} and x,e(a,b). It is
said that F is strongly generalized differentiable on x, if exist
F* (xo), F~ (%) € {FN R'},such that

(i) for all h > 0 sufficiently small,

AFt(xo + h) — F*(xg), Ft(xo) — Ft(xq — h)
and the limits (in the metric D)

+ _nt + _pt(y _ '
i ZETE) o TEDT )

RNO h hNO
OR
(ii) for all h >0 sufficiently small,

IF*(xg) = F*(xg + h), F*(xg — h) — F"(xq)
F*(xg—h)—F* (x;) = lim F*(xo)—F*(xo+h)

_
pm _y =F" (xo)

and the limits lim
hNO
OR
(iii) for all h > 0 sufficiently small,
IF*(xg + h) — F*(x), F*(xg —h) — F*(xq)
and the limits
_ F*(xg+h) —F*(xg) .. F*(xo—h)—F"(xq)
lim = lim

— +
hNO h ANO —h = F* (xo)

OR
(iv) for all h > 0 sufficiently small,

AF*(xg) —F*(xo + h),Ft(xy) — Ft(xq — h)
and the limits
_ F*(xg)—F*(xg+h) . F*(xo) —F*(xo—h)
lim =lim
h\NO —h h\O —h

= F+’(x0)

Where h and —h at deniminators mean %O and —%O
respectively. Results similar from (i) to (iv) can be defined to the
function F_’(xo) € FN R,

A first order intuitionistic fuzzy diferential equation[16] is a
diferential equation of the form:

y'®) =f(ty®)
y(to) = Yo
tel = [a,b],
where y is an intuitionistic fuzzy function of the crisp variable ¢;
f(t,u) is an intuitionistic fuzzy function of the crisp variable t and
y'(t) is the intuitionistic fuzzy derivative.
If an initial value y(t;) = yp{intuitionistic fuzzy number}, then
we get an intuitionistic fuzzy Cauchy problem of first order
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y' =1y, y(t) = Yo- (18)

Each intuitionistic is a conjecture two fuzzy numbers [10],
equation (18) is replaced by:

y© = {y*®. 57 ] [y=©.y"©]} where

YO = 1ty = min{frtwl e [yt ¥7]} = F (6,37, 57)
vt =i (19)
YEO =y = max{frcwlue [yt y7]} = 6 (3, 77),
RO (20)

y~(© = £ty =min{f-cwlue [y~ y=|} =t (ey" 7).
y~(to) = Y& 1)

Y= @® =F(6y7) = max{f~(cwlu € [y~ 57|} =1 (y~77),
y-(t)) =¥5 (22)

The system of equations in (19) and (20) have unique solution
ly*y¥] € B=Cloa]x Tlo,1]
and the system of equations (21) and (22) have unique solution
[y~ 7| € B =Clo,11 x Tlo,1].
So the system given from (19) to (22) possesses unique
solution

y® ={[y*®.y*®| [y-®.57®]} e B xB,

which is an intuitionistic fuzzy function; for each
Lyt = {[yten vy en) [y-enyenlreo

is an intuitionistic fuzzy number.
The parametric form of the system of equations (19)-(22) is
given by:

Y6 =F 6yt 60,y 60yt n) =y 0) (23)

) =6 (6t 07T En) iy ) = 7@ (24)
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y= (61 =X(6y" 607 E N )iy o) =y @) (25)
Y6 =H(6y N FEN)iT ) =% () (26)
for r € [0,1].

A solution to the system of equations (23)-(26) solves
equations(19) to(22). As mentioned in [22], in some cases, the
system (23)-(26) can be solved analytically. But in most cases,
however, analytical solutions to equations (23)-(26) do not be found
and a numerical approach must be considered. For every r, each
equation from (23)-(26) represents an ordinary Cauchy problem for
which any numerical procedure can be applied. In [22] also is
proposed Euler method and a complete error analysis guarantees the
method's convergence to the unique solution to equation (18).

To solve the intuitionistic fuzzy system of ordinary
differential system in [tg; t1]; [t1;t2]; .o [t; thsr]; - €ach interval [ty;tgyq]
is replaced by a set of Ny +1regularly spaced points.

The grid points on [ty;tx,1] Will be

tn = ti +nhy,
where
hy, = tik+1) — tk

iy
and 0 <n < N.

The defined algorithm approximate the solution of the fuzzy
initial value problem given by the system of equations (23)-(24)(or
(25)-(26)) in the cases of {(i),(ii)}-diferentiability.

7.4. Generalized Intutionistic Fuzzy Laplace transform
(GIFLT)

Laplace transform is a very useful apparatus to solve
differential equation. The Laplace transforms give the solution of a
differential equations satisfying the initial condition directly
without use the general solution of the differential equation. Fuzzy
Laplace Transform was first introduced by Allahviranloo and
Ahmadi [2]. In [20] are performed following definitions and
theorems.

Definition (14): Non negative GTIFN (Generalized Triangular
Intuitionistic Fuzzy Number) is

Abripn = ((al,az,a&w), (ai,az,ag,a)) iff ay = 0.
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Theorem 6: Let f(x) be a generalized intuitionistic fuzzy
number valued function on [a,o] and it represented by
(ilx, @ ), f2(x, @; ), g1 (x, B; ), g2 (x, B;0)), where a€[0,w],B€[0,1],0<
w,0<1. Assume fi(x,aq;w) fo(x,a;w),g.(x,B;0) and g,(x,B;0) are
Riemann-integrable on [a,b]for every b=a, and assume, there are
four positive function M, (a), M,(a), Ni(B) and N,(B),such that,

b b
[t @ ol < M@, [ 1560 wldx < M@,

b
f 19:(x B @)ldx < Ny (B)

and

b
f 19206, B; @) ldx < Ny (B)

for every b=a. Then f(x) is an intuitionistic fuzzy Riemann-
integrable on [a,) and the intuitionistic fuzzy Riemann-integral is
an intuitionistic fuzzy number. So,

ff(x)dx = ffl(x, a,w) dx,ffz (x, a, w) dx, f g1(x, B,0) dx,fgz(x,ﬁ, o)dx |.

Theorem 7: Let f(x) be a continuous intuitionistic fuzzy
valued function. Suppose that f(x) © e P*is improper fuzzy Riemann-

integrable on [0,»), then fooof(x) O e P*dx is called intuitionistic fuzzy

Laplace transforms and is denoted by: L[f(x)] = fooof(x) Qe ™Pdx(p >0
and integer). Then

j fx) ©e™P*dx

= ffl(x,a,w)@e_pxdx,ffz(x,a,a))@e_pxdx,fgl(x,B,O')

a
(o]

O e™PX dx,j g.(x,B,0) © e P*dx |.

a
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Theorem 8: Let f(x) be a continuous intuitionistic fuzzy
valued function and L[f(x)] = F(p), then L[e™ © f(x)] = F(p —a), where
e is real valued function and p—a > 0.

Theorem 9: Let f:R—>E be a function and denote f(x)=
(il @ w), fo(x, &; w), g1 (x, B; ), g2 (x, B;0)) for each a€[0,w],p €[0,1],0 <
w,0 <1 then

(1) If f is (i) —gH differentiable then
filx, x; w), fo(x, a; w), g, (x, B;0) and g,(x,B;0) are differentiable functions
and f'(x) = (fi' (v @ 0), £ (x, & w), 9, (%, B; 0), 92" (%, B; 0))

(2) If f is (ii) — gH differentiable then
f1x, a; w), fo(x, a; w), g, (x, B;0) and g,(x,B;0) are differentiable functions

and f'(x) = (' (v w), /' (@ w), 92" (x, B50), 91" (x, B 0)).

Theorem 10: Let f'(x) be an integrable fuzzy valued function,
and f(x) is the primitive of f’(x) on [0,). Then

LIf' ()] =p O Lf(x)="£(0),

when fis (i) — gH differentiable and L[f'(x)] = (=f(0)="(—p O L[fF (X)),
when f is (ii) —gH differentiable

7.5. Intuitionistic fuzzy model for the optimal control of
the mines

In [20] is given procedure for solution the first order linear
generalized intutionistic fuzzy differential equation by Generalized
intutionistic fuzzy laplace transform method. Then this procedure is
applied in two different imprecise problems.

In subsection (3.7) were defined folowing optimal problems:

T
min — f(pF(a, b) —wa)e "tdt
0
b =—F(a,b), b(t) €[0,byl,a(t) =0 for0<t<t,.
OR
T
min —f(px — C(x,b))e "dt
0
b = —x; b(0) = by; b(t) € [0,b,], x(t) =0 for 0 <t < t,.

From the principle of maximum of Pontryagin we obtain that
[32,33,35], if a"(®)(x*(t)) is optimal control (0<t<T) with
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corresponding decision b*(t) = (b%*(t),b*(t)), it exists nontrivial
solution q of
q=rq=F,@—-q), (q=1q+C),
q(T) =0, (q(T)=0).

A first order intuitionistic fuzzy diferential equation[16] is a

diferential equation of the form:
y'(® = f(t.y®),

y(to) = ¥o

tel = [a, b],
where if q is an intuitionistic fuzzy function of the crisp variable ¢t;
rq—F,(p—q), (4g=7rq+C,) is an intuitionistic fuzzy function of the
crisp variable t and q'(t) is the intuitionistic fuzzy derivative. If an
initial value q(ty) = qp{intuitionistic fuzzy number}, then we get an
intuitionistic fuzzy Cauchy problem of first order.

The solution of the problem of Cauchy for intuitionistic fuzzy
function g can be implemented on the presented methods as the
requirement for initial value for the method of GIFLT is to be
Generalized Intuitionistic triangular fuzzy numbers

AiGTIFN = ((‘11' az,a3,a)), (a3, ay, aé,a)).

An interesting case of the optimal problem is when the
Riemann integral in it is an Intuitionistic fuzzy integral of Schoken.
The marked ideas of intuitionistic modells will be the subject of
further research.

8. Conclusion

As mentioned in [9] “Minining models continue to be
developed, refined and implemented, and we predict that the use of
operations research will become increasingly significant as
mathematical modeling and technology, while the demand for
natural resources increases and resources themselves diminish.”

In this study was proved the existence of a solution of the
problem for an optimal control of a mine of resourses. In it were
pointed algorithms for finding a solution of intuitionistic fuzzy
models of a problem of mine’ s optimal control. These models are
more effective in the changing market environment.
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